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ABSTRACT 
 
The paper deals with the mortality risk evolution and presents a one factor model explaining 

the dynamics of all of the mortality rates. The selected factor will be the mortality rate at the 
key age, and an empirical study involving males and females in France and Spain will reveal 
that the present approach is not outperformed by more complex factor models. The key age 
seems to reflect several advantages with respect to other factors available in the literature. 
Actually, it is totally observable, and the methodology may be easily extended so as to 
incorporate more factors (more key ages), a cohort effect, specific mortality causes or specific 
ages. Furthermore, the choice of a key age as an explanatory factor is inspired by former 

studies about the interest rates dynamics, which allows us to draw on the model in order to 
address some longevity risk linked problems. Indeed, one only has to slightly modify some 
interest rate linked methodologies.  

Keywords: Dynamic life tables; key mortality rate; Forecasting. 

 

RESUMEN 

 

En este trabajo se desarrollará un modelo unifactorial para explicar la dinámica de las tasas 

de mortalidad y abordar el riesgo relacionado con ésta. El factor seleccionado para explicar el 
comportamiento de la  curva de mortalidad será  la tasa de mortalidad correspondiente a una 
edad clave, y, mediante un análisis empírico de las poblaciones masculina y femenina de 
Francia y España, se pondrá de manifiesto que este enfoque produce resultados, al menos tan 
buenos, como los logrados por otros modelos bastante más complejos.  Este planteamiento, 
basado  en la edad clave, presenta varias ventajas frente a otras alternativas de la literatura. 
En efecto,  el factor de riesgo (la edad clave) es totalmente observable, y la metodología puede 

extenderse fácilmente mediante la incorporación de factores adicionales (más edades clave), 
el estudio del efecto cohorte, el análisis de causas específicas de mortalidad o la consideración 
de sólo algunos tramos específicos dentro de la curva de mortalidad.  Por otro lado, debe 
señalarse que este modelo, basado en edades clave, se ha inspirado en estudios previos sobre 

la dinámica de la curva de tipos de interés,  por lo que gran parte de las metodologías 
desarrolladas para tipos de interés serían fácilmente adaptables al estudio de problemas 
relacionados con el riesgo de longevidad. 

 
Palabras clave: dinámica de la tabla de mortalidad, tasa de mortalidad clave, GLM, Predicción 
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1. INTRODUCCIÓN 

ongevity risk is becoming more and more important in insurance industry. The 

evolution of the mortality table may provoke significant capital losses in the 

portfolio of long-term contracts, and consequently, the study of this evolution 

has became a major issue in life insurance. 

 

Actuarial literature has focused on the dynamics of the mortality table by means of 

several complementary approaches. On the one hand, the seminal paper by Lee and 

Carter (1992) proposed to deal with a risk-factor model. They introduced their 

famous one factor model and, since then, many authors have extended the discussion 

by dealing with more factors (Booth et al. 2002; Brouhns et al. 2002; Cairns et al. 

(2006); Cairns et al. 2009) or cohort effects (Holford 1983; Renshaw and Haberman 

2006; and Haberman and Renshaw 2009). On the other hand, the stochastic 

mortality modeling (Biffis 2005; Di Lorenzo 2006; Schrager 2006; Plat 2009), has 

become a second line of research providing us with suitable models which can be 

calibrated to market prices (Russo et al. 2011). 

 

This paper attempts to capture the strengths of both approaches. Indeed, a one factor 

model in the line of Lee and Carter (1992) will be presented, but the significant 

difference with respect to former analyses is the chosen factor, which will equal the 

mortality rate at the “key age”'. Actually, every age might be selected as an 

explanatory factor, but the key age will equal that minimizing the in-the-sample error 

variance. 

 

This methodology seems to reveal several advantages with respect to similar 

approaches. Indeed, the key age is totally observable, the methodology may be easily 

extended so as to incorporate more factors (more key ages), a cohort effect, specific 

mortality causes or specific ages. According to our empirical findings with respect to 

the French and the Spanish populations, our model is never outperformed by former 

ones. In other words, we have an easy way to estimate and extend this simple model 

involving a unique observable factor and reflecting a good enough empirical 

performance. 

 

The use of a unique key age to explain the whole mortality table evolution is inspired 

in former studies about the Term Structure of Interest Rates or TSIR (Elton et al. 

1990; Navarro and Nave; 2001). By dealing with a few maturities and spot rates, 

many authors were able to give tractable methods and algorithms in order to price 

interest rate derivatives and hedge the interest rate risk. In this sense, our analysis 

may complement the possibilities of a stochastic mortality modeling approach. In 

fact, by studying the mortality random behavior at the key age, one can address 

many topics in longevity risk management. For instance, one can estimate risk 

measures such as a longevity-V@R or a longevity-CV@R, one can diversify the 

L 
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longevity risk by investing in sectors uncorrelated with the key age,1 2 one can create 

stochastic models explaining the mortality at the key age dynamics, or one can 

design, price and hedge mortality derivatives. There is a lot of experience about 

similar problems related to the TSIR. 

 

The paper outline is as follows. Section 2 will be devoted to presenting the model and 

its practical implementation, Section Section 3 will summarize several factor models 

of previous literature, Section 4 will deal with model estimation issues for males and 

females in both France and Spain, Section 5 and Section 6 will compare our empirical 

results in both countries with those generated by other factor models, Section 7 will 

present some ideas related to risk management problems such as a longevity-V@R 

estimation, and Section 8 will conclude the paper. 

2. SINGLE FACTOR MORTALITY MODEL 

2.1 Model description 

Following Elton et al. (1990) (EGM), in this model we will assume that changes in 

mortality rates are linearly related to a small number of factors. In this initial single 

factor version,3 we will assume that the whole life table can be explained by one 

factor, namely, the mortality rate of a particular age. We will refer to this mortality 

rate as the “key” mortality rate. Specifically, we suppose that: 

 

     , , * , * *, , * ,
ˆ ˆln ln .x t x x x x x t x x t
q b q           (1) 

 

where: 

 

 ∆𝑙𝑛(�̂�𝑥,𝑡) is the variation in the logarithm of the crude4 mortality rate at age x from year 

t-1 to year t. 

 ∆𝑙𝑛(�̂�𝑥∗,𝑡) is the change in the logarithm of the mortality rate at the key age x* from t-

1 to t. This key age will be chosen to maximize the explanatory power of the model. 

 𝛼𝑥,𝑥∗ is a constant term that captures the general tendency of a reduction (increment) 

in mortality rates and is assumed to be independent of the behavior of the key 

mortality rate �̂�𝑥,𝑡. The value of this term may differ from one age to another indicating 

a differential behavior in the reduction of mortality rates over time. 

                                                
1In the line of the Capital Asset Pricing Model, for instance. 
2 V@R and CV@R are very important risk measures in the insurance industry. Both regulatory 

(Solvency II) and internal (corporate) risk management constrains often impose the use of 

V@R and CV@R. See for instances Hardy (2003). 
3 The model can be easily generalized for two or more factors, in order to yield multifactor life 

table models. 
4 The model could be implemented using graduated mortality rates. Eventually, we decided 

to use crude mortality rates to avoid data manipulation. 
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 𝑏𝑥,𝑥∗ is a parameter that describes the sensitivity of the logarithm of the mortality rate 

at age x to changes in the logarithm of the key morality rate and captures changes in 

the shape of the mortality curve over time. 
 𝜀(𝑥,𝑥∗),𝑡 is a random error term with zero mean and constant variance 𝜎𝜀,(𝑥,𝑥∗)

2 . 

 

Although it might be expected that the variance of 𝜀(𝑥,𝑥∗),𝑡 depends on both the level 

of mortality and the size of population it should be pointed out that in equation (1) 

once the key age x* has been chosen, for each x, ∆𝑙𝑛(�̂�𝑥,𝑡) is regressed against 

∆𝑙𝑛(�̂�𝑥∗,𝑡) with t=(1975, …, 2006) and therefore  both x and x* are fixed. Thus, to test 

the presence of heteroskedasticity, we apply a battery of test: Breusch-Pagan, White, 

Goldfelt-Quandt and Harrison-McCabe tests (Breusch and Pagan, 1979; White et al., 

1980; Goldfelt and Quandt, 1965; and Harrison and McCabe, 1979). As an additional 

check we regressed the squared residuals of equation (1) against �̂�𝑥,𝑡, (�̂�𝑥,𝑡)
2
, 𝐸𝑥,𝑡 and 

(𝐸𝑥,𝑡)
2
 (𝐸𝑥,𝑡 being the exposed to risk at age x during year t). None of these tests 

allowed us to reject the null hypothesis of homoscedasticity at 99%. 

 

To obtain the key age x*, we proceed as follows. If we take into account that for a 

given age x*, the coefficient of determination between ∆𝑙𝑛(�̂�𝑥,𝑡) and ∆𝑙𝑛(�̂�𝑥,𝑡), 𝑅𝑥,𝑥∗
2  is 

given by: 

 

  
  
, * ,2

, *

,

var
1 ,

ˆvar ln

x x t

x x

x t

R
q


 


     (2) 

 
then: 
 

        2

, * , , , * ,
ˆ ˆvar ln var ln var .x x x t x t x x t

R q q        (3) 

 

According to expression (3) minimizing the variance of the residual term is equivalent 

to maximizing the left-hand side of equation (3). 

A measure of the explanatory power of �̂�𝑥∗,𝑡, with respect to the whole life table can 

then be obtained by adding up expression (3) across all ages x, that is: 

 

    2

, * ,
ˆ* var ln .x x x t

x

x R q        (4) 

 

Elton et al. (1990) suggest to use a weighting scheme when summing across ages, 

in order to deal with a subjective criterion allowing us to choose the key age in such 

a way that the explanatory power of the model focuses on certain ages or some 

range. 

 

Thus, the key age will be obtained as the age that maximizes the objective function 

𝛾(𝑥∗), that is:5 

 

                                                
5 See also Navarro and Nave (2001). 
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    
* *

2

, * ,
ˆmax * max var ln .x x x x t

x x
x

x w R q        (5) 

 

For instance, for a life insurance company it may be of special interest to have a 

model with a good performance in a particular range of ages as retired people or 

people over 60 years old. Another possibility would be to fix 𝑤𝑥 according to the size 

of the reserves of the company. The resulting model could be particularly accurate in 

the tranche of the mortality curve where the company concentrates most of its 

business. In this article, we decided to assign the values 𝑤𝑖 = 1/82 for i =18, 19, …, 

99 and 𝑤𝑖 = 0 for i= 0 to 17 as the population of interest for insurance companies is 

mostly over 18 years old. Also, in this study we will always distinguish between male 

and female populations when obtaining the key age.6 

2.2  Adjusting a sensitivity function to b_(x,x^* ) 

Once the key age is determined, we can use linear regression techniques to obtain 

estimates of the parameters 𝛼𝑥,𝑥∗ and 𝑏𝑥,𝑥∗. The second step in the modeling process 

consists of finding a function to approximate the sensitivity of changes in the 

logarithm of mortality rates to changes in the logarithm of the resulting key mortality 

rate,7 that is, a function that describes the values of �̂�𝑥,𝑥∗. This function must satisfy 

two constraints. Firstly, the function must be “smooth enough”, since sensitivities of 

mortality rates must be quite similar for similar ages. Secondly, 𝑏𝑥,𝑥∗ = 1 must hold. 

 

We propose two approaches to find this function.  

 

2.2.1. Parametric Approach 

Under the first approach, we will use a very simple parametric function, denoted by 

𝑏∗(𝑥) and inspired by a function suggested by Díaz et al. (2006). Thus: 

 

     
2

*

, * 1 2 1
ˆ * exp 1 .x x x xb b x u x x u           

  
   (6) 

 

This function is symmetric with respect to x*, the key age. This implies that the 

sensitivity of changes in the mortality rates to changes in the key mortality rate 

depends on the distance between x and x*. 

 

The parameters 𝛽1 and 𝛽2 capture the slope and width, respectively, of the hump of 

�̂�𝑥,𝑥∗ values around the key age (see in Figure 2). 

 

                                                
6 An alternative approach to determine the key age x* would be based on maximizing the 

likelihood function or its logarithm. We eventually decided to follow the original paper of 
Elton et al. (1990).  

7 We have not adjusted any function to describe the behavior of �̂�𝑥,𝑥∗, although this could be 

easily done. 
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Notice that 𝑏∗(𝑥∗) = 1 trivially follows from (6). Besides, 𝑢𝑥 is a random error with zero 

mean. To prevent the presence of heterokedasticity in (6) we assume that 𝜎𝑥
2, the 

variance of the error term, has the following structure: 𝜎𝑥
2 = 𝑘0 +

𝑘1

𝑥
. Accordingly, 

parameters 𝛽1 and 𝛽2 were estimated by applying GLS distinguishing again between 

males and females. Under this variance structure, the hyphotesis of constant variance 

for 𝑢𝑥
∗ =

𝑢𝑥

𝜎𝑥
 cannot be rejected. 

 

2.2.2. Splines 

 

The second approach to describe �̂�𝑥,𝑥∗ consists of using splines.8 A function 𝑆(𝑥) is said 

to be a spline of degree k on [𝑎, 𝑏] if: 

 

 𝑆(𝑥)  ∈ 𝐶𝑘−1      𝑜𝑛          [𝑎, 𝑏] 

 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑏    and 

 𝑆(𝑥) = {

𝑆0(𝑥)                  𝑡0 < 𝑥 < 𝑡1

𝑆1(𝑥)                 𝑡1 < 𝑥 < 𝑡2

…
𝑆𝑛−1(𝑥)               𝑡𝑛−1 < 𝑥 < 𝑡𝑛

  

 

where 𝑆(𝑥)  ∈ 𝑃𝑘. If k=3, 𝑆(𝑥) is called cubic spline. If k=3 and 𝑆′′(𝑡0) = 𝑆′′(𝑡𝑛) = 0, 

holds then 𝑆(𝑥) is called natural cubic spline. 

 

When using spline functions, two important problems must be addressed. First, the 

number of knots (𝑡0, 𝑡1, … , 𝑡𝑛) must be defined. The higher is the number of knots the 

greater is the accuracy of the adjustment. However, as we increase the number of 

knots the smoothness of the function worsens. Thus, there is a tradeoff between 

accuracy and smoothness. To solve this drawback, we employ the criterion proposed 

by McCulloch (1971) and Shea (1984), whereby the number of knots is set equal to 

the square root of the number of observations less two, that is, 𝑛 + 1 = √𝑁 − 2, where 

N is the number of mortality rates analyzed in the study. The second problem is to 

choose the position of each knot. In this paper, we will select those knots that 

minimize the sum of the squared errors, testing all integer numbers between the 

minimum and maximum ages considered. In any case, the final spline selected must 

satisfy 𝑆(𝑥∗) = 1. 

 

The specific set of splines eventually selected to describe the sensitivities 𝑏𝑥,𝑥∗ will be 

characterized in Section 4.3, where we describe the calibration of the model. 

2.3 Forecasting mortality rates 

The final step in the process of constructing the dynamic life tables consists of 

developing a methodology to forecast future mortality rates. 

                                                
8 See, for instance, Keele (2008) for further details about these functions and their properties. 
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Let us recall that, according to equation (1), if 𝑏𝑥,𝑥∗ is replaced by 𝑏∗(𝑥) and one 

rearranges terms, then: 

 

      *

, , 1 , * ,
ˆ ˆln ln * ,x t x t x x t x tq q b x z     

    (7) 

 

where: 

 

 𝑧𝑡
∗ = 𝑙𝑛(�̂�𝑥∗,𝑡) − 𝑙𝑛(�̂�𝑥∗,𝑡−1) represents the change in the logarithm of the 

mortality rate corresponding to the key age x* from t-1 to t or, alternatively, 

the relative change in the key mortality rate. 

 𝜂𝑥,𝑡 is an error term with mean zero and variance 𝜎𝜂
2. 

 

To forecast future mortality rates we assume that the variable 𝑙𝑛(�̂�𝑥∗,𝑡) follows a time 

series of the ARIMA family, which will allow us to forecast the future behavior of 

𝑙𝑛(�̂�𝑥∗,𝑡) and then, using equation (7), all the other mortality rates. 

3. ALTERNATIVE DYNAMIC MORTALITY MODELS 

here are many popular models used to forecast future mortality rates and 

construct dynamic life tables. In this paper, we describe and calibrate some of 

these models and then they will be used as benchmarks to be compared with 

the Single Factor Model (SFM). 

 

Table 1 

Description of main alternative models. 

Model Formula 

Lee-Carter (LC) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝛼𝑥 + 𝛽𝑥

(1)
· 𝑘𝑡

(1)
 

Lee-Carter 2 (LC2) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝛼𝑥 + 𝛽𝑥

(1)
· 𝑘𝑡

(1)
+ 𝛽𝑥

(2)
· 𝑘𝑡

(2)
 

Age-Period-Cohort (APC) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝛼𝑥 + 𝑘𝑡

(1)
+ 𝛾𝑡−𝑥 

Cairns-Blake-Dowd (M5) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝑘𝑡

(1)
+ (𝑥 − �̅�) · 𝑘𝑡

(2)
 

Cairns-Blake-Dowd (M6) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝑘𝑡

(1)
+ (𝑥 − �̅�) · 𝑘𝑡

(2)
+ 𝛾𝑡−𝑥 

Cairns-Blake-Dowd (M7) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝑘𝑡

(1)
+ (𝑥 − �̅�) · 𝑘𝑡

(2)
+ 𝑘𝑡

(3)
· [(𝑥 − �̅�)2 − �̂�𝑥

2] + 𝛾𝑡−𝑥 

Cairns-Blake-Dowd (M8) 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝑘𝑡

(1)
+ (𝑥 − �̅�) · 𝑘𝑡

(2)
+ 𝛾𝑡−𝑥 · (𝑥𝑐 − 𝑥) 

Renshaw-Haberman 
(RH) 

𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝛼𝑥 + 𝛽𝑥

(1)
· 𝑘𝑡

(1)
+ 𝛾𝑡−𝑥 

Plat 𝑙𝑛 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝛼𝑥 + 𝑘𝑡

(1)
+ (�̅� − 𝑥) · 𝑘𝑡

(2)
+ (�̅� − 𝑥)+ · 𝑘𝑡

(3)
+ 𝛾𝑡−𝑥 

T 
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These alternative models are described in Table 1, where:  

 

 𝛼𝑥; parameter that captures the average shape of the mortality curve. 

 𝑘𝑡
(𝑖)

; parameter that describes the general tendency of the whole life table. 

 𝛽𝑥
(𝑖)

; parameter that explains the age effect x with respect to the general trend 

in mortality rates. 

 𝛾𝑡−𝑥; parameter that accounts for the cohort effect. 

 �̅�; is the average age over the range of ages (0-99). 

 �̂�𝑥
2; is the average value of (𝑥 − �̅�)2. 

 (�̅� − 𝑥)+ = 𝑚𝑎𝑥(0, �̅� − 𝑥). 

 𝑥𝑐; parameter to be estimated. 

3.1 Lee-Carter model (LC)  

One of the most popular models to estimate future mortality rates was developed by 

Lee and Carter (1992). This model suggests the adjustment of the central mortality 

rate 𝑚𝑥,𝑡 by an exponential function that depends on age x and time t. Although 

different versions and proposals have been developed to implement the model in this 

paper, we decided to adjust the Lee-Carter model by using one of its most recent 

versions, Debón et al. (2008), where 𝑞𝑥,𝑡 is adjusted by using a logit link and assuming 

that the number of deaths follows a binomial distribution, that is: 

 

   1 1,

,

ln · .
1

x t

x x t

x t

q
k

q
 

 
    

     (8) 

3.2 Bi-Facor Lee-Carter model (LC2) 

The Lee-Carter model was developed by Lee (2000) and since its publication many 

authors have tried to improve the adjustment and to eliminate the tendency in the 

residuals. Booth et al. (2002) and Renshaw and Haberman (2003) decided to add a 

second risk factor to (8). This variation of the model can be applied too with a logit 

version to the mortality rates:9 

 

       1 1 2 2,

,

ln · · .
1

x t

x x t x t

x t

q
k k

q
  

 
     

   (9) 

3.3 Age-Period-Cohort model (APC) 

Another extension of the model consists of including a cohort effect, an improvement 

that provided very good results in fields like medicine or demography (Clayton and 

Schifflers, 1987; Holford, 1983; Hobcraft et al., 1985). In actuarial literature, Currie 

                                                
9 Following Debón et al. (2010) to estimate the parameters. 
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et al. (2006) and Renshaw and Haberman (2006) were the first authors to introduce 

this cohort effect. Particularly, the model of Renshaw and Haberman is commonly 

called Age-Period-Cohort (APC), where: 

 

 1,

,

ln .
1

x t

x x t x

x t

q

q
   

 
     

     (10) 

3.4 Cairns-Blake-Dowd model (M5) 

Cairns et al. (2006) developed a structure with two terms to model the mortality 

rates: 

 

       1 1 2 2,

,

ln · · .
1

x t

x t x t

x t

q
k k

q
 

 
    

   (11) 

 

A simplified version of the model assumes that 𝛽𝑥
(1)

= 1 and 𝛽𝑥
(2)

= (𝑥 − �̅�), and so the 

model becomes:  

 

     1 2,

,

ln · .
1

x t

t t

x t

q
k x x k

q

 
     

   (12) 

3.5 Cairns-Blake-Dowd model (M6) 

In Cairns et al. (2009) the former model was extended to include the cohort effect 

𝛾𝑡−𝑥 to (11), redefining the model as: 

 

         1 1 2 2 3,

,

ln · · · .
1

x t

x t x t x t x

x t

q
k k

q
    

 
     

   (13) 

 

It is again required that 𝛽𝑥
(1)

= 1, 𝛽𝑥
(2)

= (𝑥 − �̅�) and  𝛽𝑥
(3)

= 1. Thus, 

 

     1 2,

,

ln · .
1

x t

t t t x

x t

q
k x x k

q
 

 
      

   (14) 

3.6 Cairns-Blake-Dowd model (M7) 

Other alternative extension of the original M5 model Cairns et al. (2009) consisted of 

adding cohort and quadratic age effects: 
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         
21 2 3, 2

,

ˆln · · .
1

x t

t t t x t x

x t

q
k x x k k x x

q
  

 
            

  (15) 

3.7 Cairns-Blake-Dowd model (M8) 

Finally, Cairns et al. (2009) suggested a modification of the cohort term effect by 

introducing a decreasing effect with respect to the age: 

 

       1 2,

,

ln · · .
1

x t

t t t x c

x t

q
k x x k x x

q
 

 
       

  (16) 

All models from M5 to M8 are widely known as generalized CBD-Perks models 

(Cairns-Blake-Dowd). 

3.8 Renshaw-Haberman model (RH) 

Renshaw and Haberman (2006) considered different substructures of (10). Among 

them, we have: 

 

   1 1,

,

ln · .
1

x t

x x t t x

x t

q
k

q
   

 
     

    (17) 

 

Haberman and Renshaw (2011) suggested this very simple version that solves some 

stability issues of the original model. 

3.9 PLAT model (PL) 

Plat (2009) adds diverse characteristics of several models: It includes the parameter 

𝛼𝑥 of Lee and Carter (1992), incorporates the cohort effect Renshaw and Haberman 

(2006), the robust structure of the Renshaw-Haberman model and the multiple factor 

structure of Cairns et al. (2006, 2009): 

 

         1 2 3,

,

ln · · .
1

x t

t t t t x

x t

q
k x x k k x x

q






 
        

  (18) 

 

4. MODEL CALIBRATION 

he data used in this study consist of estimates of crude mortality rates obtained 

from the Human Mortality Database (2018) (HMD) corresponding to the Spanish 

and French experiences. Data from 1975-2006 were used to calibrate the T 
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models. Data from 2007-2015 were used for out of sample testing and ages covered 

in this study, range from 0 to 99, distinguishing between male and female 

populations. 

4.1 Data 

To select the key age we proceed with the optimization process described in Section 

2.1. The weighting scheme applied in function (4) implied that ages below 18 were 

not taken into consideration when selecting the key age. There are mainly two 

reasons for that decision. Firstly, theses ages are of minor interest for the insurance 

industry, and secondly the number of deaths at these ages is very small and so the 

corresponding estimates of the crude rate of mortality are extremely volatile, 

distorting the analysis. 

4.2 Selection of the key age 

This high volatility of the relative changes in crude mortality rates also affects (but 

not strongly) the older ages. However, we included them in the determination of the 

key age. Actually, the right side of the mortality curve is of special relevance for the 

insurance and pension industries. Although crude mortality rates for elderly people 

are also highly variable, we considered it inadequate to disregard them when 

determining the key age. 

 

The functions 𝜑(𝑥∗) in equation (5), which represent the explanatory power of each 

mortality rate to the whole mortality curve between 18 and 99 years old in Spain and 

France are depicted in Figure 1. In the Spanish case the mortality rate with the 

highest explanatory power is x*=29 for both male and female. In the French case 

the key age is 83 for males and 91 for females. 

 

Let us highlight the similar pattern of that in both pictures: a double hump that peaks 

at ages around 25-35 years and 80-95 years, respectively. The main difference is 

that the first hump dominates the second one in the Spanish population, while for 

the French population we can observe the opposite effect. Recall that the function 

𝜑(𝑥∗) represents the explanatory power of a singular age x in order to describe the 

changes in the whole mortality curve. These results can be justified by a more severe 

impact of AIDS in Spain, a disease that caused a very pronounced change in the 

shape of the mortality curve in the tranche of ages between 20 and 40 years during 

the sample period covered by this study. The influence of AIDS in the French 

population was by far less intense, although it can be also observed. By contrast, the 

other main change in shape of the mortality curve affected its right end and captured 

the steady decrease in mortality rates of people over 45 years old, a change that 

made it to increase the slope of the mortality curve in this tranche of ages. 

 

To sum up, we can state that the key age gives a hint of the part of the mortality 

curve where the main changes in its shape are taking place. In the case of the 
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Spanish population, this part was the tranche of ages between 20 and 40 probably 

as a consequence of the dramatic irruption of AIDS.10 In the case of the French 

population, though also affected by the disease, the main transformation in the shape 

of the mortality curve were observed for more advanced ages. 

 

 

Figure 1 

Values of the function 𝝋(𝒙∗), covering the period 1975 to 2006. 

 
 

Table 1 shows the values of the parameters estimates �̂�𝑥,𝑥∗ and �̂�𝑥,𝑥∗ corresponding to 

the sample period (1975-2006) for each country and population, as well as their 

corresponding key ages. 

 

In the case of the Spanish population, the values of �̂�𝑥,𝑥∗ are represented in Figures 

2 (a) and 2 (b) for males and females, respectively. As can be seen, the pattern in 

both figures is similar, with a maximum at the key rate x*=29, a symmetric hump 

around the key age and an approximately constant value close to zero from 35 years 

of age onwards. At the same time, the values of �̂�𝑥,𝑥∗ are negative for all ages, except 

for the key age (where the value of �̂�𝑥,𝑥∗ must equal zero) and the age of 98 in both 

cases. When �̂�𝑥,𝑥∗ ≈ 0, the main force driving mortality rates is the constant �̂�𝑥,𝑥∗ which 

can be understood as a constant annual change in mortality rates. As seen in Table 

1, the �̂�𝑥,𝑥∗ values critically depend on x, and it is much more negative for females 

than for males, indicating a faster decrement in the mortality rates of women during 

the sample period. This phenomenon is particularly acute in the tranche between 50 

and 80 years of age. 

  

In the case of France, the values �̂�𝑥,𝑥∗ are plot in Figures 2 (c) and 2 (d). Again males 

and females follow a similar pattern: there is a hump at early ages, then the value 

of �̂�𝑥,𝑥∗ remains constant and close to zero between 20 and 60 years and finally, it 

                                                
10 This fact has been highlighted in Felipe et al. (2002), Guillen and Vidiella-i Anguera 
(2005) and Debón et al. (2008) where it is documented the particularly acute impact of this 
disease in the Spanish population in comparison to other European countries. 
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increases with age approaching a value equal to one at the key age. The values of 

�̂�𝑥,𝑥∗ are negative for all ages up to the key age. At the key age, the value of �̂�𝑥,𝑥∗ 

must equal zero. For older ages the �̂�𝑥,𝑥∗ values are usually positive but close to zero. 

As in the case of the Spanish population, the values of �̂�𝑥,𝑥∗ are close to zero around 

the key age. By contrast, when �̂�𝑥,𝑥∗ is close to zero the main force driving mortality 

rates are the constants �̂�𝑥,𝑥∗. It is worth noting that the �̂�𝑥,𝑥∗ values are smaller 

particularly between 75 and 85 years for the female population, indicating a faster 

decrement in mortality rate. 

 

Table 2 

 �̂�𝒙,𝒙∗ and �̂�𝒙,𝒙∗ (1975-2006). 

 Spain France 

 Male (x*=29) Female (x*=29) Male (x*=83) Female (x*=91) 

 �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ �̂�𝑥,𝑥∗ 

0 -0.0527 0.0580 -0.0553 -0.0338 -0.0431 -0.1227 -0.0438 -0.1807 

10 -0.0384 -0.1767 -0.0254 0.1422 0.0069 2.5863 -0.0323 0.9545 

15 -0.0154 0.1374 -0.0262 0.0504 -0.0306 -0.0842 -0.0249 0.2451 

20 -0.0183 0.1489 -0.0250 -0.2318 -0.0208 0.4554 -0.0162 0.6571 

25 -0.0084 0.4428 -0.0369 -0.2051 -0.0225 -0.2031 -0.0424 -0.7773 

29 0.0000 1.0000 0.0000 1.0000 -0.0180 0.0031 -0.0284 0.1037 

30 -0.0043 0.6932 -0.0301 0.1860 -0.0144 0.0758 -0.0301 0.3002 

40 -0.0120 0.2446 -0.0164 -0.0303 -0.0140 0.2164 -0.0200 -0.0383 

50 -0.0151 -0.0146 -0.0183 0.0294 -0.0142 0.0670 -0.0141 -0.0489 

60 -0.0148 0.0380 -0.0249 0.0236 -0.0121 0.4106 -0.0151 0.1696 

70 -0.0203 0.0605 -0.0306 0.0135 -0.0205 0.2402 -0.0184 0.5047 

80 -0.0165 0.0726 -0.0234 0.0584 -0.0101 0.5208 -0.0167 0.6392 

83 -0.0164 0.0720 -0.0232 -0.0138 0.0000 1.0000 -0.0132 0.6885 

90 -0.0085 0.0198 -0.0135 0.0089 0.0000 0.6599 -0.0044 0.8262 

91 -0.0071 0.0947 -0.0087 0.0527 0.0002 0.6613 0.0000 1.0000 

95 -0.0052 0.0953 -0.0044 0.0613 0.0072 0.7510 -0.0054 0.5424 

99 -0.0036 0.1336 -0.0005 0.1932 0.0218 1.3141 0.0052 0.6456 

 

4.3 Calibration the sensitivity function 𝒃∗(𝒙) 

The next step consists of approximating a function to describe as accurately as 

possible the behavior of the estimates of 𝑏𝑥,𝑥∗. In Section 2.2, we proposed two 

options. The first consists of adjusting function (6), that is: 

 

     
2

, * 1 2 1
ˆ * ·exp * 1x x x xb b x u x x u          

 
  (19) 

 

The parameters of this function were estimated by GLS according to weighting 

scheme, explained in Section 2.2.2, for each country (Spain and France) and each 
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group (Male and Female) and they are shown in Table 2. Figures 2 (a), 2 (b), 2 (c) 

and 2 (d) depict the resulting 𝑏∗(𝑥) functions together with the values of �̂�𝑥,𝑥∗. 

 

Table 3 

Parameter estimates of the function 𝒃∗(𝒙) of sensitivities to the key mortality rate 

for the sample period (1975-2006). 

 

Country Spain France 

Number of obs = 

100 
Male Female Male Female 

Key age x* 29 29 83 91 

𝛽1 0.9014* 0.9548* 0.7711* 0.8152* 

𝛽2 0.0466* 2.9709* 0.0059* 0.041* 

Adj-R2 0.40 0.27 0.07 0.12 

∑𝑥𝑢𝑥
2 2.37 2.28 20.41 38.90 

       *Significantly different from zero at 99%. 

 

Figure 2 

 �̂�𝒙,𝒙∗ values and adjusted functions using the parametric approach and the best 

cubic splines for the sample period (1975-2006). (a) Spain male, (b) Spain female, 
(c) France male and (d) France female.  
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The second option was to fit splines to describe the values of  �̂�𝑥,𝑥∗.
11 We tried different 

types of splines, including quadratic splines, cubic splines, natural cubic splines and 

an alternative type of spline explained bellow. In particular, the set of splines that 

were tried to describe �̂�𝑥,𝑥∗ for each population were:  

 

a) Cubic natural splines with 7 knots. Two knots are located at the initial and final ages 

(0 and 99). Another one is located at the key age to ensure that 𝑏∗(𝑥) = 1. The other 

four knots were selected among integer ages within the age interval [0, 99] to 

minimize the sum of squared errors. These were the optimal splines finally applied 

to the French population. 

b) An alternative cubic spline, 𝑆(𝑥), specifically designed to describe the behaviour of 

�̂�𝑥,𝑥∗ around the key age: 

 

Let 𝑃(𝑥) be a 3rd degree polynomial: 

 

       3 3 2 2* * * 1P x a x x b x x c x x        

We add to the left and right of x=x* cubic functions, such that the spline becomes: 

       
3 3

1 1

m n

j i i i

j i

S x P x l x k x 
 

 

       

 

where Ϛ1 < Ϛ2 < ⋯ < Ϛ𝑚 < 𝑥∗ < 𝜂1 < 𝜂2 < ⋯ < 𝜂𝑛  are the knots of the spline function, 

and, 

 

       2,0      and       ,0i i jx Max x x Min x   
 

       

 

In this way, we can ensure that 𝑆(𝑥∗) = 1 and belongs to C2. The knots were selected 

among integer ages between 0 and 99, applying OLS, so as to minimize the sum of 

the squared errors. These splines were eventually selected to describe �̂�𝑥,𝑥∗ for the 

Spanish population. 

 

The results and the splines selected are shown in Table 4 and depicted in Figure 2. 

 

 

 

 

 

 

 

 

                                                
11 Other types of splines could be applied. For instance, penalized splines (see Eilers and Marx 

(1996)) have been used for smoothing and forecasting mortality rates as in Currie et al. 
(2004b). 
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Table 4 

Spline functions used to describe 𝒃𝒙,𝒙∗ (1975-2006). 

Country Spain France 

Number of 

obs=100 
Male Female Male Female 

Key age x* 29 29 83 91 

Natural cubic  

Splines 

Knots: Knots: Knots: Knots: 

24,25,29, 

37,38 
27,27,29,32,32 12,13,15,65,89 1,11,12,69,91 

∑𝑥𝑢𝑥
2 1.9964 3.3615 14.6864 27.3379 

Alternative 

Splines 

Knots: Knots: Knots: Knots: 

28,29,30,51 28,29,30,31 18,19,84,85 11,12,92,93 

∑𝑥𝑢𝑥
2 1.5770 3.1407 14.8134 27.6175 

 

4.4 Forecasting mortality rates 

The next step is to forecast future mortality rates. In Figure 3, we show the behavior 

of the logarithms of the key mortality rates during the sample period (1975 - 2006). 

It is of interest to highlight the strong increment in mortality rates (particularly for 

the male and female Spanish populations) that occurred during the 1980s, followed 

by an extraordinary drop, due to the impact of AIDS and later discoveries of 

treatments for that disease. It should be noted that the key ages correspond to the 

population groups most strongly affected by the infection: the portion of the 

population roughly 30 years of age. 

 

Figure 3 

Evolution of 𝑳𝒏(𝒒𝒙∗;𝒕−𝟏,𝒕) in key ages, sample period (1975-2006).  
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To model the behavior of these key mortality rates, we examined different 

alternatives in the ARIMA family. They were selected using auto.arima functions and 

forecast from the R Core Team (2018) package developed by Hyndman and 

Khandakar (2008) which specifies the ARIMA (p,d,q) model that best fits the data 

based on the Akaike criterion. We employed four different sample windows to 

estimate the parameters of the model used to forecast mortality rates: 

 

i. The sample period covers 1975-2006; the model is used to forecast mortality 

rates from 2007 onwards without updating the sample. 

ii. The time series parameters are re-estimated, enlarging the end of the sample 

window every year from 2006 through 2014. In this case, the model is re-

estimated every year and used to forecast the mortality rate only one year 

ahead. 

iii. The sample period starts in the year when the key mortality rate reaches its 

maximum value through 2006. Once the parameters are estimated, they are 

used to forecast mortality rates from 2007 onwards, without updating them. 

iv. The forecasting sample period begins the same year as in iii), but the sample 

period is enlarged, and the parameters are re-estimated every year to forecast 

future mortality rates only one year ahead (similarly to ii)). 

 

Using these four proposals, we proceeded to estimate the expected future values of 

the key mortality rates from 2007 to 2014, a period used for out-of-sample testing. 

Figure 4 shows the key future mortality forecasts for the two countries considered in 

this study (France and Spain) and for the two groups of populations (male and 

female), along with the actual behavior of the key mortality rates. 

 

As seen at a glance in Figure 4, using the samples that start in the early 1990s 

produces, in the case of Spain, a much better forecast of mortality rates. This is due 

to the irregular behavior of mortality rates during the eighties were mortality rates 

around the key ages increased dramatically to reach a maximum during the nineties 

and then resuming their declining path. 
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Figure 4 

Forecast of the key mortality rate for Spain male (a), Spain female (b), France male 
(c) and France female (d), (sample i, sample ii, sample iii and sample iv).  

 
 

 

In the case of the French population, samples i) and iii) and samples ii) and iv) are 

equal as the key mortality rates reached their maximum at the beginning of the 

sample period (1975). 

 

Once forecasts of the key mortality rates were obtained, estimates of the remaining 

expected future mortality rates were determined by taking expectations on both sides 

of the equation: 

 

     , , * , * *, , * ,
ˆ ˆln ln .x t x x x x x t x x t
q b q           (20) 

 

In the case of the non-updating samples (i and ii) we have: 

 

           1 , , 1 , * 1 *, *, 1
ˆ ˆ ˆ ˆln ln 1 · * · ln ln ,t x t i x t x x t x t i x tE q q i b x E q q     

           (21) 

0,1,2,....,7;    t=2007i   
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In the case of the updating samples (ii and iv): 

 

         1 , , , * 1 *, *, 1
ˆ ˆ ˆ ˆln ln * · ln ln ,t x t x t x x t x t x tE q q b x E q q  

           (22) 

2007,2008,....,2014t   

 

where 𝛼𝑥,𝑥∗ and 𝑏∗(𝑥) are re-estimated every year t. 

5. ALTERNATIVE MORTALITY MODELS 

5.1 Model calibration 

In this section, we calibrate the different versions and proposals, explained in Section 

3, which will be used as benchmarks for comparison with the Single Factor Model 

developed above. 

 

The first important mortality model by Lee and Carter (1992) proposed the use of 

Singular Value of Decompositions (SVD) to estimate the parameters. The second 

procedure consisted of maximising the log-likelihood using the Newton-Raphson 

method.12 Currie et al. (2004) improved the estimation procedure by applying GLM 

(Generalized Linear Models) to the force of mortality, using the gnm library  (Turner 

and Frith, 2018) from the R Core Team (2018) package developed by Hyndman and 

Khandakar (2008). 

 

We decided to adjust the probability of death assuming a binomial distribution and a 

logit link for every model explained in Section 3.13 In this paper, we apply gnm 

function of  R Core Team (2018) to adjust LC and LC2 models.14 The rest of models 

were calibrated with StMoMo package of R Core Team (2018) developed by Villegas 

et al. (2018).15 

Additionally, APC, M6, M7, M8, RH and PLAT models include the cohort term 𝛾𝑡−𝑥. In 

all cases, zero weights are applied to the 1886 cohort,16 to the earliest and the latest 

3 cohort years (Renshaw and Haberman (2006). 

 

Furthermore, details with the fitting of LC2 and APC parameters are illustrated in 

Figures 5 and 6. 

                                                
12 See for instance, Brouhns et al. (2002), Renshaw and Haberman (2006) and Cairns et al. 

(2009). 
13 According to Lee (2000) the logit version avoids estimates of 𝑚𝑥,𝑡 greater than one. 
14 Following Debón et al. (2008), where the authors compared the calibration of Lee-Carter 

model to the Spanish mortality data applying different methods: SVD, maximum likelihood 
and GLM, the latter providing the best outcomes. 

15 This library provides a tool for fitting stochastic mortality models. 
16 See, for instance, Haberman and Renshaw (2009). 
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Figure 5 

Model LC2: Estimated values of 𝛼𝑥 (𝑎), 𝛽𝑥
(1)

  (𝑏),   𝑘𝑡
(1)

  (𝑐),  𝛽𝑥
(2)

  (𝑑),   𝑘𝑡
(2)

  (𝑒), over the 

sample period (1975-2006). 

 

Figure 6 

Model APC: Estimated values of 𝜶𝒙 (𝒂), 𝒌𝒕
(𝟏)

 (𝒃) 𝒂𝒏𝒅 �̂�𝒕−𝒙 (𝒄), over the sample period 

(1975-2006). 

 

 

Bearing in mind that 𝛼𝑥 represents the average shape of the mortality rates as a 

function of the age x, \ Figures 5 (a) and 6 (a) show that women mortality rates were 

lower than men ones, and Spanish mortality rates are lower than French ones for 
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both men and women. With respect to 𝛽𝑥
(1)

 and 𝛽𝑥
(2)

, we should note that it reports 

how mortality rates react to changes in mortality trend. The higher is the value of 

𝛽𝑥
(𝑖)

, the greater is the decrement in the mortality rate at age x. It is interesting to 

observe in Figures 5 (b) and 6 (c)  that the values of 𝛽𝑥
(1)

 are close to zero for ages 

around 29 (the key age) and 𝛽𝑥
(2)

 values reach its maximum around the same age, 

indicating a different pattern of mortality around these ages. 𝛾𝑡−𝑥 represents a cohort 

effect. 

5.2 Lee-Carter model mortality rates forecast 

In all the models explained above, the predictions of future mortality rates are based 

on the adjustment of a time series to the mortality period indexes 𝑘𝑡
(𝑖)

 and the cohort 

index  𝛾𝑡−𝑥. We need to estimate these indexes with time series techniques to forecast 

the future mortality rates. 

 

The main problem when forecasting mortality models is to determine the dynamics 

of period and cohort indexes. In the original model, Lee and Carter (1992) used an 

ARIMA (0,1,0) to adjust 𝑘𝑡
(𝑖)

. Following Renshaw and Haberman (2006), Cairns et al. 

(2011) and Lovász (2011), we assume that the cohort index  𝛾𝑡−𝑥 can be described 

by an univariate ARIMA process which is independent of the period index 𝑘𝑡
(1)

. So, we 

apply the StMoMo library which uses the function auto.arima of forecast library from 

the R Core Team (2018) package, to determine the ARIMA model that best fits 𝑘𝑡
(𝑖)

 

and  𝛾𝑡−𝑥 indexes.17 As in Section 4.4, we employ the same four alternative samples 

to forecast the values of 𝑘𝑡
(𝑖)

 and  𝛾𝑡−𝑥. 

 

As an example, Figures 7 and 8 present, respectively, the expected values of the 

mortality indexes for LC2 and APC in Spanish male population. 

 

Figure 7 

Forecast of 𝒌𝒕
(𝟏)

 and 𝒌𝒕
(𝟐)

 values for male in Spain with LC2. 

 
 

 

 
 

                                                
17 See Hyndman and Khandakar (2008) for further details. 
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Figure 8 

Forecast of 𝒌𝒕
(𝟏)

 and  �̂�𝒕−𝒙 values for male in Spain with APC.  

 

6. COMPARISON BETWEEN THE SINGLE FACTOR MODEL AND OTHER MORTALITY 

MODELS 

n this section, we proceed to compare the Single-Factor Model with different 

mortality models. In Table 5 we see some relevant criteria to compare the 

characteristics of these ten models.18 When a criterion is met, the model is labeled 

; otherwise, the model is marked with , both symbols are used when the model 

partly meets the criterion. 

 

Table 5 

Characteristics to evaluate mortality models 

 

Model  SFM LC LC2 APC M5 M6 M7 M8 RH PLAT 

Number of 
parameters 

200 232 364 271 64 193 227 195 363 335 

Number of constrains  0 2 4 2 0 3 3 3 3 6 

Include the cohort 
effect 

          

Number of indexes 
to forecast 

1 1 2 2 2 3 4 3 2 4 

Ease of 
implementation 

          

Observable variables           
Applicable for full 
range of variables 

 / / /     /  

 

 

 

                                                
18 Other comparison criteria can be seen in Cairns et al. (2009), Plat (2009) and Haberman 

and Renshaw (2011).  

I 
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The characteristics are defined as: 

 Number of parameters: effective number of parameters estimated in each 

model. Spain and France, males and females, ages 0-99 and period (1975 - 

2006), insample. 

 Number of constraints: set of constraints necessary to ensure the identifiability 

of the model. 

 Include the cohort effect: the model incorporates a cohort effect. 

 Number of indexes to forecast: number of indexes that is necessary to model 

for estimating the future mortality rates. 

 Ease of implementation: how easy is to implement the model. 

 Observable variables: indexes can be directly observed. 

 Applicable for full range of age, the model can be applied to all ages. 

 

In Table 5 we have compared the characteristics of 9 different mortality models 

against our Single Factor Model. We would like to emphasize three main findings: 

 

i. Our model and M5 do not need constraints to estimate the parameters, 

meanwhile the rest of the mortality models require at least two constraints.  

ii. The cohort effect is not included in SFM but it would be possible to add it to 

the model. 

iii. One of the main advantages of the model is that the variable that measures 

the general tendency of mortality is directly observable, we know exactly what 

it is, the key mortality rate. Meanwhile, in the other mortality models 𝑘𝑡
(𝑖)

 

captures the general tendency but it has to be estimated. 

6.1 Forecasting ability of the models 

After describing the main features of each model, we proceed to compare their 

forecasting ability. In this paper, we estimate the forecasting mortality rate errors 

for each year from 2007 to 2014, the out of sample period. 

 

We denote the logarithm of the actual crude mortality rate for t=2007, …,2014 by 

𝑙𝑛(�̂�𝑥,𝑡) and the logarithms of the mortality rates forecasted by the Single Factor Model 

and different alternatives for t=2007, …, 2014 by 𝑙𝑛(�̂�𝑥,𝑡
𝑆𝐹𝑀), 𝑙𝑛(�̂�𝑥,𝑡

𝐿𝐶 ), 𝑙𝑛(�̂�𝑥,𝑡
𝐿𝐶2), 𝑙𝑛(�̂�𝑥,𝑡

𝐴𝑃𝐶), 

…, respectively. Then, the forecasting errors for each year and age in the Single 

Factor Model are given by: 

 

   , , 1 *,
ˆ ˆln ln                0,1,  ...,  8;   2007SFM SFM

x t i x t i t x t iq E q i t    
    
 

  (23) 

 

in the case of non-updating samples (cases i) and iii) in Section 4.4) or, 

 

   , , 1 *,
ˆ ˆln ln              t  2007,2008,  ...,  2014,SFM SFM

x t x t t x tq E q 
   
 

 (24) 
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in the case of updating samples (cases ii) and iv) in Section 4.4). 

 

For the rest of models,19 for instance Lee-Carter model,20 the forecasting errors for 

each year and age are calculated as: 

 

 
 

 

1

1

ˆˆ ·

, , ˆˆ ·
ˆln ln                0,1,  ...,  8;    2007

1

x x t t i

x x t t i

a b E k

LC

x t i x t i a b E k

e
q i t

e


 

 



  

 
    

  

  (25) 

 

in the case of non-updating samples (cases i) and iii)) or, 

 

 
 

 

1

1

ˆˆ ·

, , ˆˆ ·
ˆln ln                2007,2008,  ...,  2014,

1

x x t t

x x t t

a b E k

LC

x t x t a b E k

e
q t

e










 
   

  

  (26) 

 

in the case of updating samples (cases ii) and iv)). 

 

To illustrate the results, we plot the forecasting errors for LC2 against SFM for the 

Spanish male population21 (Figures 9 and 10) as well as the forecasting errors for 

APC against SFM for the French female population (Figures 11 and 12).22 Each figure 

represents the errors corresponding to the four samples considered in this paper (i), 

ii), iii) and iv) as described in Section 4.4). 

 

Panels (a) and (c) in Figures 9, 10, 11 and 12 represent errors as a function of age. 

As we have forecasted mortality for 2007-2014, for each model and age, there are 

eight errors, representing each of the out of sample years. By contrast, Panels (b) 

and (c) in Figures 9, 10, 11 and 12 depict errors as a function of the forecasting 

horizon. Therefore, we have 100 observations for each forecasting period and model, 

corresponding to ages from 0 to 99. 

 

As can be seen in Figures 9 and 10, the errors size in the Bi-Factorial Lee-Carter 

model are similar to the SFM. Nevertheless, for Spanish males older than 70 our 

model seems to produce smaller forecasting errors. Besides, if one compares SFM 

and APC (one of the mortality models that better adjusts the data), both models 

produce similar errors, except that SFM seems to be better for French women older 

than 70. 

 

 

 

 

                                                
19 All the errors for each model explained in Section 3 are calculated similarly to (25) and 

(26). 
20 Recall that we have estimated the logit version of each model as explained in Section 3. 
21 In this case, we apply the Parametric Adjustment for �̂�𝑥,𝑥∗ as explained in Section 2.2.1. 
22 In this case, we apply Spline Adjustment for �̂�𝑥,𝑥∗ as explained in Section 2.2.2. 
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Figure 9 

Forecasting errors. Spanish male population. SFM with PA vs LC2 sample i) and 
sample ii). 

 
 

Figure 10 

Forecasting errors. Spanish male population. SFM with PA vs LC2 sample iii) and 
sample iv). 
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Figure 11 

Forecasting errors. French female population. SFM with SA vs APC sample i) and 
sample ii). 

 
Figure 12 

Forecasting errors. French female population. SFM with SA vs APC sample iii) and 

sample iv). 
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6.2 SSE, MAE and MSE 

To compare the performance of the models, we have computed three standard 

metrics of accuracy: the Sum of Squared Errors (SSE), the Mean Absolute Error 

(MAE) and the Mean Square Error (MSE). The first is defined as:23 

 

    
2

/ / 2/...

, ,

,

ˆ ˆln ln ,           t=2007, 2008, . . . , 2014SFM LC LC

x t x t

x t

SSE q q    (27) 

The second is defined as:24 

 

 
   

99 / / 2/...

, ,0
ˆ ˆln ln

,            t 2007,2008,...,2014.
100

SFM LC LC

x t x tx
q q

MAE t



 


 (28) 

 

The third is defined as:25 

 

 
    

299 / / 2/...

, ,0
ˆ ˆln ln

,            t 2007,2008,...,2014.
100

SFM LC LC

x t x tx
q q

MSE t



 


 (29) 

 

Errors are calculated for each year from 2007 to 2014, using the four alternative 

sample windows and the best sensitivity adjustment functions for �̂�𝑥,𝑥∗ for each 

population.26 The outcomes for Spanish male and French female population are 

summarized in Table 6 for SSE, in Tables 7 and 8 for MAE and Tables  9 and 10 for 

MSE, respectively. 

 

 

                                                
23 See, for instances Chen et al. (2009). 
24 See, for instance Booth et al. (2006). 
25 See, for instance Felipe et al. (2002), Debón et al. (2010), D´Amato et al. (2012) and Wang 

et al. (2018). 
26 The approach of �̂�𝑥,𝑥∗  which produces the best result for SSE, MAE and MSE is the Parametric 

Approach for Spanish male and female. In the French case they are the Parametric 
Adjustment for male and the Spline Adjustment for female population. Anyway, the rest of 
alternatives produce very similar outcomes. 
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Table 6: SSE for Spain and France for both male and female populations. 
 

Mortality Spanish male population Spanish female population 

Model Sample i) Sample ii) Sample iii) Sample iv) Sample i) Sample ii) Sample iii) Sample iv) 

SFM 55.05 32.14 33.71 31.64 27.02 23.65 27.02 23.59 

LC1 121.01 61.85 121.69 99.62 46.12 30.43 47.53 30.96 

LC2 67.91 15.68 31.83 15.81 45.84 18.02 23.66 16.56 

APC 46.54 29.37 47.16 29.59 26.39 21.36 28.93 21.91 

M5 461.18 525.04 517.66 533.21 2547.33 2300.13 2492.64 2292.79 

M6 610.23 401.20 728.42 405.61 671.22 479.97 825.99 496.57 

M7 356.04 270.52 527.37 274.90 413.69 330.98 643.47 363.09 

M8 525.09 398.10 658.12 413.06 560.76 476.08 765.91 495.28 

RH 30.77 16.86 25.92 16.44 23.75 16.80 35.09 15.63 

PLAT 58.12 58.90 67.25 60.11 31.03 38.60 32.93 38.80 

Mortality France male population France female population 

Model Sample i) Sample ii) Sample iii) Sample iv) Sample i) Sample ii) Sample iii) Sample iv) 

SFM 9.21 8.49 9.19 8.49 16.41 14.33 16.41 14.33 

LC1 18.68 11.63 18.68 11.63 16.54 12.22 16.54 12.22 

LC2 12.97 7.75 12.97 7.75 16.81 13.11 16.81 13.11 

APC 10.25 8.06 10.31 8.11 10.82 8.45 10.16 8.49 

M5 394.62 379.81 394.62 379.81 1656.42 1541.16 1656.42 1541.16 

M6 692.63 760.97 762.10 457.69 664.83 440.60 715.02 448.52 

M7 653.56 375.82 811.57 391.67 452.55 383.54 629.94 374.07 

M8 597.85 451.74 735.75 467.19 562.44 459.82 681.56 475.20 

RH 9.40 7.31 9.60 7.31 21.44 8.67 19.64 8.02 

PLAT 11.95 11.12 12.12 11.24 11.82 11.79 10.07 11.84 
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Table 7: MAE for Spanish  male population. 
 

 

 

Forecasting 
Horizon 

Spanish male population 

Sample i) 

SFM LC1 LC2 APC M5 M6 M7 M8 RH PLAT 

2008 0.0963 0.1697 0.0872 0.1480 0.4142 0.4113 0.3289 0.4125 0.0934 0.1643 

2010 0.1696 0.2530 0.1887 0.1854 0.3742 0.4894 0.3572 0.4867 0.1448 0.1733 

2012 0.1994 0.2666 0.2210 0.1893 0.3820 0.5298 0.3704 0.5107 0.1510 0.1814 

2014 0.2574 0.3313 0.3040 0.2146 0.3773 0.6219 0.4217 0.5843 0.2010 0.1826 

 Sample ii) 

2008 0.0922 0.1570 0.0744 0.1415 0.4314 0.3960 0.3237 0.4009 0.0938 0.1724 

2010 0.1211 0.1995 0.0913 0.1490 0.4183 0.4224 0.3047 0.4296 0.1165 0.1701 

2012 0.1387 0.1820 0.0875 0.1221 0.4402 0.4121 0.2894 0.4244 0.0908 0.1534 

2014 0.1535 0.1906 0.1113 0.1296 0.4357 0.4235 0.3148 0.4672 0.1093 0.1490 

 Sample iii) 

2008 0.0922 0.1699 0.0772 0.1479 0.4322 0.4207 0.3404 0.4172 0.0920 0.1763 

2010 0.1103 0.2541 0.1321 0.1852 0.4101 0.5186 0.3858 0.5001 0.1342 0.2004 

2012 0.1387 0.2679 0.1495 0.1911 0.4331 0.5832 0.4318 0.5463 0.1342 0.2049 

2014 0.1534 0.3338 0.2155 0.2173 0.4388 0.7092 0.5191 0.6463 0.1765 0.2354 

 Sample iv) 

2008 0.0890 0.1650 0.0791 0.1391 0.4397 0.3965 0.3271 0.4014 0.0900 0.1808 

2010 0.1211 0.1991 0.0963 0.1527 0.4234 0.4222 0.3100 0.4327 0.1182 0.1783 

2012 0.1383 0.1823 0.0858 0.1224 0.4474 0.4116 0.2963 0.4266 0.0893 0.1553 

2014 0.1533 0.1905 0.1091 0.1315 0.4348 0.4527 0.3189 0.4707 0.1101 0.1549 
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Table 8: MAE for French female population. 

 

 

Forecasting 
Horizon 

French female population 

Sample i) 

SFM LC1 LC2 APC M5 M6 M7 M8 RH PLAT 

2008 0.0772 0.0879 0.0848 0.0636 0.9204 0.5143 0.4413 0.5274 0.0613 0.0614 

2010 0.0940 0.1006 0.0964 0.0763 0.9477 0.5604 0.4703 0.5537 0.0941 0.0816 

2012 0.1217 0.1219 0.1139 0.0799 0.9857 0.5906 0.4958 0.5548 0.1522 0.0897 

2014 0.1224 0.1277 0.1250 0.0858 1.0043 0.6695 0.5261 0.5940 0.1986 0.0808 

 Sample ii) 

2008 0.0756 0.0837 0.0771 0.0586 0.9247 0.4862 0.4320 0.5106 0.0564 0.0618 

2010 0.0878 0.0824 0.0873 0.0745 0.9127 0.4779 0.4445 0.5137 0.0688 0.0805 

2012 0.1117 0.0955 0.0842 0.0687 0.9164 0.4512 0.4399 0.4911 0.0686 0.0807 

2014 0.1074 0.0938 0.1169 0.0878 0.9504 0.4681 0.4829 0.5051 0.0899 0.1076 

 Sample iii) 

2008 0.0772 0.0879 0.0848 0.0626 0.9204 0.5164 0.4494 0.5338 0.0590 0.0598 

2010 0.0940 0.1006 0.0964 0.0753 0.9477 0.5666 0.4979 0.5719 0.0906 0.0774 

2012 0.1217 0.1219 0.1139 0.0783 0.9857 0.6051 0.5596 0.5915 0.1475 0.0835 

2014 0.1224 0.1277 0.1250 0.0828 1.0043 0.6967 0.6355 0.6572 0.1914 0.0738 

 Sample iv) 

2008 0.0756 0.0837 0.0771 0.0598 0.9247 0.4871 0.4262 0.5119 0.0568 0.0629 

2010 0.0878 0.0824 0.0873 0.0748 0.9127 0.4787 0.4262 0.5156 0.0694 0.0809 

2012 0.1117 0.0955 0.0842 0.0688 0.9164 0.4520 0.4030 0.4930 0.0649 0.0803 

2014 0.1074 0.0938 0.1169 0.0884 0.9504 0.4690 0.4275 0.5072 0.0881 0.1103 
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Table 9: MSE for Spanish male population. 
 

 
 

Forecasting 
Horizon 

Spanish male population 

Sample i) 

SFM LC1 LC2 APC M5 M6 M7 M8 RH PLAT 

2008 0.1623 0.2771 0.1376 0.2097 0.7731 0.7388 0.6045 0.7238 0.1315 0.2880 

2010 0.2463 0.3856 0.2639 0.2466 0.7430 0.8471 0.6619 0.8025 0.1880 0.2711 

2012 0.2869 0.4242 0.3283 0.2526 0.7559 0.9174 0.6789 0.8321 0.2025 0.2665 

2014 0.3606 0.4885 0.4239 0.2710 0.7665 1.0597 0.7677 0.9299 0.2698 0.2596 

 Sample ii) 

2008 0.1562 0.2543 0.1218 0.1999 0.7941 0.7037 0.5996 0.6948 0.1367 0.2911 

2010 0.1954 0.3024 0.1394 0.2070 0.7915 0.7103 0.5762 0.7069 0.1582 0.2728 

2012 0.2055 0.2712 0.1285 0.1829 0.8206 0.6977 0.5590 0.6955 0.1300 0.2667 

2014 0.2485 0.2774 0.1629 0.1753 0.8376 0.7558 0.6041 0.7527 0.1612 0.2413 

 Sample iii) 

2008 0.1524 0.2773 0.1223 0.2099 0.7941 0.7644 0.6471 0.7529 0.1290 0.2958 

2010 0.1945 0.3865 0.1843 0.2470 0.7831 0.9063 0.7636 0.8723 0.1737 0.2890 

2012 0.2177 0.4251 0.2051 0.2545 0.8170 1.0198 0.8694 0.9604 0.1817 0.2900 

2014 0.2675 0.4901 0.2866 0.2737 0.8450 1.2113 1.0467 1.1198 0.2378 0.2994 

 Sample iv) 

2008 0.1513 0.2599 0.1229 0.1990 0.8041 0.7089 0.6159 0.7104 0.1295 0.2970 

2010 0.1936 0.3020 0.1456 0.2089 0.7976 0.7111 0.5758 0.7190 0.1615 0.2770 

2012 0.2048 0.2704 0.1261 0.1831 0.8289 0.7011 0.5626 0.7102 0.1285 0.2645 

2014 0.2481 0.2773 0.1630 0.1765 0.8381 0.7557 0.5808 0.7663 0.1634 0.2471 
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Table 10: MSE for French female population. 
 

 

Forecasting 
Horizon 

French female population 

Sample i) 

SFM LC1 LC2 APC M5 M6 M7 M8 RH PLAT 

2008 0.1265 0.1182 0.1191 0.0961 1.3842 0.7931 0.6948 0.7895 0.0878 0.0884 

2010 0.1485 0.1374 0.1392 0.1133 1.4150 0.8953 0.7620 0.8468 0.1211 0.1336 

2012 0.1645 0.1496 0.1482 0.1231 1.4625 0.9717 0.7840 0.8676 0.1887 0.1407 

2014 0.1753 0.1673 0.1698 0.1297 1.4913 1.0776 0.8161 0.9090 0.2477 0.1264 

 Sample ii) 

2008 0.1244 0.1122 0.1086 0.0857 1.3904 0.7495 0.6717 0.7557 0.0784 0.0880 

2010 0.1416 0.1234 0.1311 0.1109 1.3691 0.7528 0.7034 0.7737 0.1038 0.1202 

2012 0.1536 0.1231 0.1202 0.1062 1.3700 0.7402 0.6998 0.7620 0.1019 0.1264 

2014 0.1561 0.1292 0.1543 0.1173 1.4228 0.7395 0.7275 0.7569 0.1214 0.1426 

 Sample iii) 

2008 0.1265 0.1182 0.1191 0.0937 1.3842 0.8024 0.7274 0.8129 0.0824 0.0858 

2010 0.1485 0.1374 0.1392 0.1118 1.4150 0.9195 0.8560 09083 0.1176 0.1231 

2012 0.1645 0.1496 0.1482 0.1197 1.4625 1.0158 0.9642 0.9812 0.1828 0.1258 

2014 0.1753 0.1673 0.1698 0.1231 1.4913 1.1446 1.0966 1.0823 0.2377 0.1055 

 Sample iv) 

2008 0.1244 0.1122 0.1086 0.0872 1.3904 0.7552 0.6775 0.7635 0.0794 0.0899 

2010 0.1416 0.1234 0.1311 0.1116 1.3691 0.7577 0.7044 0.7838 0.1052 0.1211 

2012 0.1536 0.1231 0.1202 0.1062 1.3700 0.7482 0.6874 0.7784 0.0944 0.1257 

2014 0.1561 0.1292 0.1543 0.1169 1.4228 0.7446 0.6986 0.7690 0.1182 0.1452 
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6.3 Sign Test 

Finally, in this section we apply a sign test (Dixon and Mood, 1946) to 

analyze the significance of the differences in the forecasting abilities of 

the models. If the forecasting power of two models were similar, we would 

expect that the number of ages where one model anticipates mortality 

rates better than the other would be similar. Let 𝛿𝑋,𝑇 be defined as follows: 

 

, ,

,

1     if      

0                  otherwise

0,1,...,99;       2007,2008,...,2014.

SFM LC

x t x t

x t

x t

 


 
 


                                          (30) 

 

If both models had the same forecasting ability for a given horizon t, 

(t=2007, 2008,… ,2014), then 𝑋𝑡 = ∑ 𝛿𝑋,𝑇
99
𝑥=0  would be a binomial random 

variable with parameters N=100 and p=0.5, that is: 

 

 ~ 100,0.5tX Bi
                                                                    (31) 

 

In a one-tail test the critical values of X are equal to 56, 58 and 62 at 

significance levels of 90%, 95% and 99%, respectively. If 𝑋𝑡 is equal to 

or greater than these values that would indicate that the Single Factor 

Model provides significantly better estimates of future mortality rates than 

the competing model for each period t (t=2007, 2008, …, 2014). 

 

Figure 13: Number of items |𝜀𝑥,𝑡
𝑆𝐹𝑀| < |𝜀𝑥,𝑡

𝐿𝐶/𝐿𝐶2/.
| In Spanish male population 

with PA, a) 2007 and b) 2014. 
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Figure 13 

Number of items |𝜺𝒙,𝒕
𝑺𝑭𝑴| < |𝜺𝒙,𝒕

𝑳𝑪/𝑳𝑪𝟐/.
| In French female population with SA, a) 

2007 and b) 2014. 

 

7. FINANCIAL LIKE APPROACHES IN LONGEVITY RISK. 

s said in the introduction, the approach of this paper is inspired in 

former studies about the TSIR, and therefore this approach should 

be useful to address several financial and risk management 

problems involving the longevity risk. Potential examples are the 

estimation risk measures such as a longevity –V@R, the diversification of 

the longevity risk by investing in sectors uncorrelated with the key age, 

or the design, valuation and hedging of mortality derivatives in the line of 

Milevsky and Promislow (2001). Obviously, all of these topics are beyond 

the scope of this paper, though, with illustrative purposes only, we will 

summarize some general ideas about a longevity-V@R estimate. 

 

A first approach in a longevity –V@R estimate may be related to Monte 

Carlo simulation. If the distribution of ∆𝑙𝑛(�̂�𝑥∗,𝑡) can be properly estimated 

then (1) allows us to simulate ∆𝑙𝑛(�̂�𝑥,𝑡) for every age x, and consequently 

one can simulate the whole behavior of a portfolio of life-insurance linked 

products. In other words, a correct estimation of the distribution of 

∆𝑙𝑛(�̂�𝑥∗,𝑡) for a given time horizon T will enable us to simulate a large 

sample of the global indemnification of a life insurance portfolio within this 

horizon T, and this sample will enable us to measure the portfolio risk 

according to several classical risk measures such as the V@R. This 

A 
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measurement may be important to address classical problems such as the 

estimation of reserves or other risk management issues. 

 

Under some assumptions the Monte Carlo simulation may be replaced by 

analytical approximations. For instance, following the approach of Vasicek 

(1987) about the estimation of a credit-V@R for a portfolio of loans (see 

also Hull 2014), one can give the approximation of a longevity-V@R by 

means of: 

 

    1 1

@
1

F T
longevity V R M

 



    
   
               (32) 

 

where β is the level of confidence, M > 0 is a parameter depending on the 

portfolio size, ф is the cumulative distribution function of the standard 

normal distribution, F is the cumulative distribution function of the 

variable “time till dead at the key age”', and ρ is a “copula correlation” 

connecting the variables “time till dead at age x”' and “time till dead at 

age y”', which is supposed to be independent of both x and y. Obviously, 

ideal assumptions in the line of those of Vasicek (1987) must be imposed 

in order to accept the expression above. If these assumptions do not hold, 

then one can still focus on more general credit risk approaches in order 

to estimate a longevity-V@R. In the limit case, if none of the assumptions 

hold in our particular problem, then, as indicated above, Monte Carlo 

simulation may provide us with useful numerical procedures. 

8. CONCLUSIONS 

he mortality evolution may be explained by a one factor model only 

involving a key age, since our empirical study for males and females 

in both France and Spain reveals that more complex factor models 

do not outperform our results. The advantage of this new approach seems 

to be clear. Indeed, the factor has nothing hidden and is totally 

observable, the methodology may be easily extended so as to incorporate 

more factors (more key ages), specific mortality causes or a cohort effect, 

and, according to former analyses related to the TSIR dynamics, our 

findings may complement the possibilities of a stochastic mortality 

modeling approach. In fact, by studying the mortality random behavior at 

the key age, one can address many topics in longevity risk management 

T 
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such as the estimation of a longevity-V@R, the longevity risk 

diversification, or the design, valuation and hedging of mortality linked 

derivatives. 
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